27 - SOMMES DE RIEMANN DES FONCTIONS CONTINUES CROISSANTES

www.daniel-saada.eu

La somme de Riemann $S_n(f) = \frac{1}{n} \sum_{k=1}^n f(k/n)$ d'une fonction f continue et croissante $\sup[0,1]$ converge en

étant supérieure à sa limite $\int_0^1 f(x) dx$: il est naturel de se demander si $S_n(f)$ finit par décroître.

Les réponses à cette question sont les suivantes : $S_n(f)$ décroit à partir d'un certain rang si f est de classe au moins C^2 , cette assertion est fausse si f est seulement C^0 ou C^1 .

Pour le cas C^0 , on donnera une contre-exemple ; pour le cas C^1 , seule une preuve indirecte est fournie. On supposera dans tout le texte f non constante, ce qui équivaut à f(1) > f(0).

Notations

On désignera par E l'espace vectoriel des fonctions f continues de [0,1] dans $\mathbb R$ muni de la norme $N(f) = \max_{[0,1]} |f|$; (E,N) est un espace de Banach.

 E_1 est le sous-espace des fonctions de E qui sont de classe $\,C^1$; E_1 est dense dans E pour la norme N .

On pose $D_n(f) = S_n(f) - S_{n+1}(f)$; chaque D_n est une forme linéaire continue sur ${\cal E}$.

Si f est dans E , F désignera une primitive de f ; la quantité $\Delta_n(f) = D_n(F)$ ne dépend pas de la primitive F choisie. Enfin, appelons (\mathcal{P}) l'implication suivante :

si f est continue et croissante, $S_n(f)$ est décroissante à partir d'un certain rang (ce qui équivaut à $D_n(f) \ge 0$ à partir d'un certain rang).

1) (\mathcal{P}) est vraie pour toute f au moins C^2

Pour f dans E, on posera $I(f) = \int_0^1 f(x) dx$.

Comme f " est uniformément continue, pour tout $\varepsilon > 0$, on aura $|f''(u) - f''(v)| \le \varepsilon$ si u et v sont dans un seg-

ment
$$\left[\frac{k-1}{n}, \frac{k}{n}\right]$$
 et n est assez grand. Aussi, pour x dans $\left[\frac{k-1}{n}, \frac{k}{n}\right]$ et $k = 1, 2, ..., n$:

$$-\varepsilon(x-k/n)^{2}/2 \le f(x)-f(k/n)-(x-k/n)f'(k/n)-(x-k/n)^{2}f''(k/n)/2 \le \varepsilon(x-k/n)^{2}/2$$

(on s'appuie sur $f(x) = f(k/n) + (x - k/n)f'(k/n) + (x - k/n)^2 f''(c)/2$ avec c entre x et k/n).

On intègre
$$\operatorname{sur}\left[\frac{k-1}{n},\frac{k}{n}\right]$$
 et on somme $\operatorname{sur} k:\left|I(f)-S_n(f)+\frac{1}{2n}S_n(f')+\frac{1}{6n^2}S_n(f'')\right|\leq \frac{\varepsilon}{6n^2}$, ce qui signifie
$$S_n(f)=I(f)+\frac{1}{2n}S_n(f')+\frac{1}{6n^2}S_n(f'')+o\left(\frac{1}{n^2}\right).$$

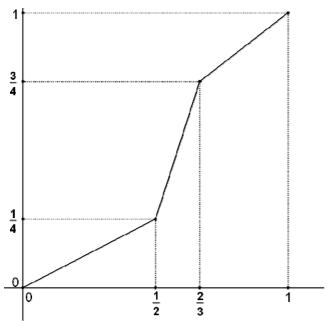
Un calcul analogue aurait donné, f' étant C^1 : $S_n(f') = I(f') + \frac{f(1) - f(0)}{2n} + o(1/n)$, d'où

$$S_n(f) = I(f) + \frac{f(1) - f(0)}{2n} + \frac{b}{n^2} + o(1/n^2), b = I(f')/4 + I(f'')/6$$

et $S_n(f) - S_{n+1}(f)$ équivalente à $\frac{f(1) - f(0)}{2n^2}$ (f(1) > f(0) , d'où la décroissance de $S_n(f)$ à partir d'un d'un certain rang.

2) (\mathcal{P}) peut être fausse si f est seulement C^0 (Bruno Langlois)

Soit $\,f_1\,{\rm la}$ fonction affine par morceaux dont le graphe est :

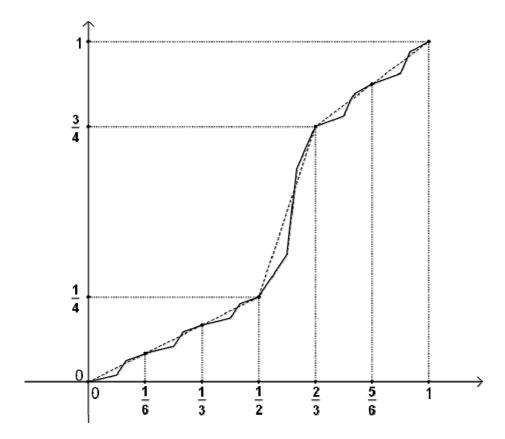


On a $S_2(f_1) = 5/8$, $S_3(f_1) = 23/36$, et par conséquent $S_3(f_1) > S_2(f_1)$.

On construit par récurrence, en partant de $f_{\scriptscriptstyle 1}$, une suite $(f_{\scriptscriptstyle n})$ de fonctions affines par morceaux, continues et crois-

$$\text{santes par}: f_{n+1}(x) = f_n\bigg(\frac{i}{6^n}\bigg) + f_1(6^nx - i)\Bigg[f_n\bigg(\frac{i+1}{6^n}\bigg) - f_n\bigg(\frac{i}{6^n}\bigg)\Bigg] \text{ quand } x \in \left[\frac{i}{6^n}, \frac{i+1}{6^n}\right] \text{ et } 0 \leq i < 6^n \,.$$

Voici à titre d'exemple le graphe de f_2 :



$$\text{En particulier, } f_{n+1}\bigg(\frac{i}{6^n}\bigg) = f_n\bigg(\frac{i}{6^n}\bigg) \text{ parce que } f_1(0) = 0 \text{ , et } f_{n+1}\bigg(\frac{i+1}{6^n}\bigg) = f_n\bigg(\frac{i+1}{6^n}\bigg) \operatorname{car} f_1(1) = 1 \text{ .}$$

Montrons à présent que la suite f_n converge uniformément sur [0,1] vers une fonction f continue et croissante.

D'abord, on prouve par récurrence que sur chaque intervalle $\left[\frac{i}{6^n},\frac{i+1}{6^n}\right]$, $|f_n(x)-f_n(y)| \le 1/2^n$. Si x et y sont

dans
$$\left[\frac{i}{6^{n+1}}, \frac{i+1}{6^{n+1}}\right]$$
 et si $i = 6q + r$, alors x et y sont dans $\left[\frac{q}{6^n}, \frac{q+1}{6^n}\right]$ et

$$f_{n+1}(x) - f_{n+1}(y) = \left[f_1(6^n x - q) - f_1(6^n y - q) \right] \left[f_n \left(\frac{q+1}{6^n} \right) - f_n \left(\frac{q}{6^n} \right) \right].$$

$$\text{D'où } |f_{n+1}(x) - f_{n+1}(y)| \leq \frac{1}{2^n} |f_1(6^n x - q) - f_1(6^n y - q)| \text{ et comme } 6^n x - q \text{ et } 6^n y - q \text{ sont dans } \left[\frac{r}{6}, \frac{r+1}{6}\right],$$

il vient
$$|f_{n+1}(x) - f_{n+1}(y)| \le \frac{1}{2^{n+1}}$$
.

Ensuite, prouvons que $N(f_{n+1}-f_n) \le 1/2^{n-1}$. Si x est dans un $\left[\frac{i}{6^n},\frac{i+1}{6^n}\right]$,

$$f_{n+1}(x) - f_n(x) = f_{n+1}(x) - f_{n+1}(i/6^n) + f_n(i/6^n) - f_n(x)$$
, et donc

$$|f_{n+1}(x) - f_n(x)| \le |f_{n+1}(x) - f_n(i/6^n)| + |f_n(i/6^n) - f_n(x)| \le f_n\left(\frac{i+1}{6^n}\right) - f_n\left(\frac{i}{6^n}\right) + \frac{1}{2^n} \le \frac{2}{2^n}.$$

Il en résulte que la suite f_n converge uniformément sur [0,1] vers une fonction f , continue et croissante comme les f_n . Montrons que pour cette fonction f , $S_n(f)$ ne décroît à partir d'aucun rang.

a) $\operatorname{si} x = p / 6^q$, alors $f_n(x) = f_q(x)$ pour tout $n \ge q$ et donc $f(x) = f_q(x)$. Il en résulte que pour out $n \ge q$

$$S_{6^{n}/2}(f_n) = \frac{2}{6^n} \sum_{k=1}^{6^n/2} f_n \left(\frac{2k}{6^n} \right) = S_{6^n/2}(f) \text{ et } S_{6^n/3}(f) = S_{6^n/3}(f_n).$$

b)
$$S_{6^{n}/2}(f_n) = \frac{S_3(f_1) - 1}{6^{n-1}} + S_{6^{n-1}}(f_{n-1})$$

$$\text{Par d\'efinition, } S_{6^n/2}(f_n) = \frac{2}{6^n} \sum_{1}^{3 \times 6^{n-1}} f_n \bigg(\frac{k}{3 \times 6^{n-1}} \bigg) = \frac{1}{6^{n-1}} \sum_{0}^{6^{n-1}-1} \frac{1}{3} \bigg[f_n \bigg(\frac{k+1/3}{6^{n-1}} \bigg) + f_n \bigg(\frac{k+2/3}{6^{n-1}} \bigg) + f_n \bigg(\frac{k+1}{6^{n-1}} \bigg) \bigg].$$

Or sur
$$\left[\frac{k}{6^{n-1}}, \frac{k+1}{6^{n-1}}\right]$$
, $f_n(x) = f_{n-1}\left(\frac{k}{6^{n-1}}\right) + f_1(6^{n-1}x - k)\left[f_{n-1}\left(\frac{k+1}{6^{n-1}}\right) - f_n\left(\frac{k}{6^{n-1}}\right)\right]$ par construction.

Donc,
$$S_{6^{n}/2}(f_n) = \frac{1}{6^{n-1}} \sum_{0}^{6^{n-1}-1} \left\{ \frac{1}{3} \left[f_1\left(\frac{1}{3}\right) + f_1\left(\frac{2}{3}\right) + f_1\left(1\right) \right] \left[f_{n-1}\left(\frac{k+1}{6^{n-1}}\right) - f_{n-1}\left(\frac{k}{6^{n-1}}\right) \right] + f_{n-1}\left(\frac{k}{6^{n-1}}\right) \right\},$$

et
$$S_{6^{n}/2}(f_n) = \frac{S_3(f_1)}{6^{n-1}} + \frac{1}{6^{n-1}} \sum_{n=0}^{6^{n-1}-1} f_{n-1}\left(\frac{k}{6^{n-1}}\right) = \frac{S_3(f_1)-1}{6^{n-1}} + S_{6^{n-1}}(f_{n-1}).$$

c)
$$S_{6^{n}/3}(f_n) = \frac{S_2(f_1) - 1}{6^{n-1}} + S_{6^{n-1}}(f_{n-1})$$

En partant avec
$$S_{6^n/3}(f_n) = \frac{3}{6^n} \sum_{1}^{2 \times 6^{n-1}} f_n \left(\frac{k}{2 \times 6^{n-1}} \right) = \frac{1}{6^{n-1}} \sum_{0}^{6^{n-1}-1} \frac{1}{2} \left[f_n \left(\frac{k+1/2}{6^{n-1}} \right) + f_n \left(\frac{k+1}{6^{n-1}} \right) \right]$$
, on aboutit

sans difficultés à
$$S_{6^{n}/3}(f_n) = \frac{S_2(f_1)}{6^{n-1}} + \frac{1}{6^{n-1}} \sum_{0}^{6^{n-1}-1} f_{n-1} \left(\frac{k}{6^{n-1}}\right) = \frac{S_2(f_1)-1}{6^{n-1}} + S_{6^{n-1}}(f_{n-1})$$
 .

On a donc $S_{6^{n}/2}(f_n) - S_{6^{n}/3}(f_n) = \frac{S_3(f_1) - S_2(f_1)}{6^{n-1}} > 0$.

3) (\mathcal{P}) est fausse si f est C^1 (Alain Rémondière)

On raisonne par l'absurde en supposant (\mathcal{P}) vraie pour toute f croissante C^1 .

a) il existe une constante K telle que, pour toute f C^1 et tout n>1 , $\left|D_n(f)\right| \leq K.N(f')/n^2$

 (\mathcal{P}) vraie veut dire que $\forall f$ croissante et C^1 , $D_n(f) = S_n(f) - S_{n+1}(f) \geq 0$ à partir d'un certain rang. Soit alors $H_n = \left\{ f \in E : \forall k \geq n, \Delta_k(F) \geq 0 \right\}$: H_n est fermé dans E car chacune des formes linéaires $f \to \Delta_k(F)$ est continue. La réunion des H_n contient toutes les f positives car leurs primitives F sont C^1 et croissantes. Le cône des f positives est d'intérieur non vide $\operatorname{car}\left\{f \in E : f > 0\right\}$ est un ouvert (f > 0 implique $f \geq m > 0$ et donc B(f, m/2) est dans le cône).

Comme (E,N) est complet, le Théorème de Baire assure que l'un des H_n est d'intérieur non vide ; comme les fonctions C^1 sont denses $\operatorname{dans}(E,N)$, il existe f C^1 et a>0 tels que B(f,a) reste $\operatorname{dans}H_n$. Il en résulte que $g\in E$ et N(g) < a impliquent f+g est $\operatorname{dans}H_n$, d'où $\Delta_k(F+G) \geq 0$ pour tout $k\geq n$; en changeant g en -g, on aboutit à $\left|\Delta_k(G)\right| \leq \Delta_k(F)$ quand $k\geq n$ et N(g) < a. Par linéarité, $\left|\Delta_k(G)\right| \leq \Delta_k(F).N(g)/a$ pour toute g dans E. Mais F étant C^2 , on sait que $\Delta_k(F) \leq K/k^2$, d'où $\left|\Delta_k(G)\right| \leq K.N(g)/k^2$ pour tout $k\geq n$ et g dans g si on pose g is entires g plus petits que g étant en nombre fini, on a, avec une autre constante g is g pour tout g.

b) (\mathcal{P}) est fausse

Soit f_n définie par :

 f_n est nulle sur $[0,1/(n+1)] \cup [n/(n+1),1]$,

$$f_n$$
 vaut $\left(x-\frac{k}{n+1}\right)^2 \left(x-\frac{k+1}{n+1}\right)^2 \operatorname{sur}\left[\frac{k}{n+1},\frac{k+1}{n+1}\right]$, k allant de 1 à $n-1$; f_n est C^1 .

Par construction, $S_{n+1}(f_n) = 0$ et $D_n(f_n) = S_n(f_n)$; comme $k \le n$, $\frac{k}{n} \in \left\lceil \frac{k}{n+1}, \frac{k+1}{n+1} \right\rceil$ et donc :

$$S_n(f_n) = \frac{1}{n} \sum_{k=1}^n f_n(k/n) = \frac{1}{n^5(n+1)^4} \sum_{k=1}^n k^2(n-k)^2 = \frac{n(n+1)(n^3-n^2+n-1)}{30n^5(n+1)^4} = \frac{n^3-n^2+n-1}{30n^4(n+1)^3}.$$

 $D_n(f_n)$ équivaut donc à $1/30n^4$.

Calcul de $N(f'_n)$

Si $h(x) = (x-a)^2(x-b)^2$, h'(x) = 2(x-a)(x-b)(2x-a-b) et $h''(x) = (2x-a-b)^2 + 2(x-a)(x-b)$ est un trinôme qui s'annule pour $x = \frac{a+b}{2} \pm \frac{\sqrt{3}}{6}(b-a)$, d'où $\max_{[a,b]} |h'| = \frac{\sqrt{3}(b-a)^3}{9}$. On en déduit que

$$N(f'_n) = \frac{\sqrt{3}}{9(n+1)^3}$$
 et donc que $N(f'_n)$ est équivalente à $\sqrt{3}/9n^3$ quand $n \to \infty$.

Pour n assez grand, $|D_n(f_n)| \le K.N(f_n)/n^2$ n'est vérifiée pour aucun K.

COMPLÉMENTS

1) Il y a équivalence entre les trois assertions suivantes :

- (i) (\mathcal{P}) est vraie (pour toute fonction C^1)
- (ii) Il existe une constante K telle que, pour toute f C^1 et tout n > 1 , $\left| D_n(f) \right| \le K.N(f')/n^2$

(iii) Pour toute
$$f(C^1)$$
, $\lim_{n} n^2 D_n(f) = \frac{f(1) - f(0)}{2}$.

Nous savons que (i) implique (ii). Il est évident que (iii) implique (i) puisque f(1) > f(0).

Reste à montrer (ii) implique (iii).

Nous partons du fait que (iii) est vraie pour f C^2 puis nous opérons par densité.

On se donne $f(C^1)$: il existe $g(C^2)$ telle que $N(f-g) \le \varepsilon$ et alors

$$\left| n^2 D_n(f) - \frac{f(1) - f(0)}{2} \right| \le \left| n^2 D_n(f) - n^2 D_n(g) \right| + \left| n^2 D_n(g) - \frac{g(1) - g(0)}{2} \right| + \left| \frac{g(1) - g(0)}{2} - \frac{f(1) - f(0)}{2} \right|.$$

g étant fixée, $\left| n^2 D_n(g) - \frac{g(1) - g(0)}{2} \right| \le \varepsilon$ à partir d'un certain rang n_1 ;

$$\left| \frac{g(1) - g(0)}{2} - \frac{f(1) - f(0)}{2} \right| \le N(f - g) \le \varepsilon ;$$

 $\left|n^2D_n(f)-n^2D_n(g)\right|=\left|n^2D_n(f-g)\right|\leq M/n^2\leq \varepsilon$ à partir d'un certain rang n_2 .

Pour $n \ge \max(n_1, n_2)$, $\left| n^2 D_n(f) - \frac{f(1) - f(0)}{2} \right| \le 3\varepsilon$, ce qui établit (iii) à partir de (ii).

2) Comme (\mathcal{P}) est fausse, il existe au moins une fonction f C^1 telle que la limite de $n^2D_n(f)$ n'est pas $\frac{f(1)-f(0)}{2}$, soit que $n^2D_n(f)$ n'ait pas de limite , soit que $\lim_n n^2D_n(f) \neq \frac{f(1)-f(0)}{2}$.

Nous montrons que c'est la première piste qui est la bonne car si $n^2D_n(f)$ converge, c'est vers $\frac{f(1)-f(0)}{2}$.

Soit L la limite, éventuelle, de $n^2D_n(f)$: si L est non nulle, $D_n(f)$ est équivalent à L/n^2 et on sait alors que

$$\sum\nolimits_{n}^{\infty}D_{k}(f)\sim L\sum\nolimits_{n}^{\infty}1/k^{2}\sim L/n \text{ ; comme } \sum\nolimits_{n}^{\infty}D_{k}(f)=S_{n}(f)-I(f)\text{ , }L=\frac{f(1)-f(0)}{2}\text{ . Si }L=0\text{ , alors }L=0\text{ , alors }L=0\text{ , alors }L=0\text{ .}$$

 $D_n(f) = o(1/n^2)$ et on aurait $S_n(f) - I(f) = o(1/n)$ ce qui suppose implique f(1) = f(0) d'après **1)**, d'où encore $\lim_n n^2 D_n(f) = \frac{f(1) - f(0)}{2}$.

On en arrive donc à la conclusion qu'il existe $f \ C^1$ telle que $n^2D_n(f)$ ne converge pas.
