QUELQUES PRIMITIVES DE FONCTIONS NON CONTINUES

PARTIE A

Dans toute cette partie, f désigne une fonction de $\mathbb{R} \to \mathbb{R}$ continue, périodique, non identiquement nulle. On désignera par T une période strictement positive de f, par F la primitive de f qui s'annule en $\mathbf{0}$ ($F(x) = \int_0^x f$), par F le réel $\frac{1}{T}\int_0^T f(t)dt$. La fonction f0 est définie et continue sur \mathbb{R}^* , mais aucun prolongement ne peut la rendre continue sur \mathbb{R}^* 0. Nous allons pourtant prouver qu'un prolongement rend f(1/x) primitivable sur \mathbb{R}^* 0.

$$f(1/x)$$
 a une primitive sur \mathbb{R} si et seulement si on pose $f(0) = L = \frac{1}{T} \int_0^T f(t) dt$.

L'unicité du prolongement s'établit par l'absurde : s'il en existait deux, leur différence serait la fonction nulle sur \mathbb{R}^* ; comme cette différence a une primitive, c'est la fonction nulle sur \mathbb{R} .

Pour l'existence, nous donnons deux démonstrations, l'une par primitives, l'autre avec l'intégrale. Les deux preuves utilisent un lemme sur les fonctions f continues de période T:

$$\begin{aligned} &\operatorname{Si} F(x) = \int_0^x f \text{ , il existe un réel } M \text{ tel que} \left| F(x) - \frac{x}{T} \int_0^T f(t) dt \right| \leq M \text{ ;} \\ &\operatorname{en conséquence, } F(x) / x \to L \text{ et } F(x) / x^2 \to 0 \text{ quand } x \to \infty \text{ , } L = \frac{1}{T} \int_0^T f \text{ .} \end{aligned}$$

En effet, la fonction $x \to \int_0^x f(t)dt - \frac{x}{T} \int_0^T f(t)dt$ est de période T ; comme elle est continue, elle est bornée sur $\mathbb R$.

Preuve avec l'intégrale

Cette démonstration repose sur l'écriture intégrale, permise ici, d'une primitive de $f(1/x) \operatorname{sur} \mathbb{R}^*: \int_0^x f(1/t) dt$. Il s'agit de montrer que cette primitive a pour dérivée L en x=0 et donc que $\lim_{x\to 0} \frac{1}{x} \int_0^x f(1/t) dt = L$. On peut se borner à la limite à droite car, pour x<0, $\frac{1}{x} \int_0^x f(1/t) dt = \frac{1}{-x} \int_0^{-x} f(-1/t) dt$ et comme la fonction $x\to f(-x)$ est continue et de période T:

$$\lim_{x \to 0^{-}} \frac{1}{x} \int_{0}^{x} f(1/t) dt = \lim_{x \to 0^{+}} \frac{1}{x} \int_{0}^{x} f(-1/t) dt = \frac{1}{T} \int_{0}^{T} f(-t) dt = \frac{-1}{T} \int_{0}^{-T} f(t) dt = \frac{1}{T} \int_{0}^{T} f(t) dt = L \text{ encore.}$$

Le changement de variable $t \leftarrow 1/t$ donne $\lim_{x \to 0^+} \frac{1}{x} \int_0^x f(1/t) dt = \lim_{x \to 0^+} \frac{1}{x} \int_{1/x}^{+\infty} f(t)/t^2 dt = \lim_{X \to +\infty} X \cdot \int_X^{+\infty} f(t)/t^2 dt$.

En intégrant par parties,
$$\int_{X}^{+\infty} f(t)/t^2 dt = \left\lceil \frac{F(t)}{t^2} \right\rceil_{X}^{+\infty} + 2 \int_{X}^{+\infty} F(t)/t^3 dt = \frac{-F(X)}{X^2} + 2 \int_{X}^{+\infty} F(t)/t^3 dt$$
, d'où

$$X \int_{X}^{+\infty} f(t) / t^{2} dt = -F(X) / X + 2X \int_{X}^{+\infty} F(t) / t^{3} dt.$$

 $\text{L'encadrement } \frac{L}{t^2} - \frac{M}{t^3} \leq \frac{F(t)}{t^3} \leq \frac{L}{t^2} + \frac{M}{t^3} \text{ permet d'obtenir } 2L - M \ / \ X \leq 2X \int_X^{+\infty} F(t) \ / \ t^3 dt \leq 2L + M \ / \ X$ et enfin $X \int_X^{+\infty} f(t) \ / \ t^2 dt \to -L + 2L = L$, ce qui achève la démonstration.

Preuve par primitives

Soit $g(x) = x^2 \cdot F(1/x)$, où rappelons-le $F(x) = \int_0^x f$, et g(0) = 0: g est continue sur \mathbb{R} et g'(0) = L. Posons $h(x) = x \cdot F(1/x)$ et h(0) = L: h est continue sur \mathbb{R} et possède donc une primitive H sur \mathbb{R} .

Pour $x \neq 0$, g'(x) = 2h(x) - f(1/x), aussi f(1/x) a pour primitive sur \mathbb{R}^* la fonction $\Psi(x) = 2H(x) - g(x)$.

 $\Psi(0) = 2H(0) \text{ et } \Psi'(0) = \lim_{x \to 0} \frac{2H(x) - g(x) - 2H(0)}{x} = 2h(0) - g'(0) = 2L - L : \Psi \text{ est donc une primitive de } f(1/x) \text{ sur } \mathbb{R} \text{ quand } f(1/x) \text{ est prolongée par } L \text{ en 0}.$

Exemples

Les trois fonctions $\sin(1/x)$, $|\sin(1/x)|$, $\sin^2(1/x)$, prolongées convenablement en 0, ont des primitives sur $\mathbb R$:

-
$$\sin(1/x)$$
 par 0 car $\frac{1}{2\pi} \int_0^{2\pi} \sin(t) dt = 0$;

-
$$|\sin(1/x)|$$
 par $\frac{2}{\pi}$ puisque $\frac{1}{\pi} \int_0^{\pi} |\sin t| dt = \frac{2}{\pi}$;

-
$$\sin^2(1/x)$$
 par $\frac{1}{2}$ parce que $\frac{1}{\pi} \int_0^{\pi} \sin^2(t) dt = \frac{1}{2}$.

PARTIE B

Si la fonction $\sin(1/x)$, prolongée par 0, a une primitive sur $\mathbb R$ et donc $\sup[0,+\infty[$, la fonction $\sin(\ln x)$ n'a pas de primitive $\sup[0,+\infty[$. En effet $\frac{1}{x}\int_0^x \sin(\ln t)dt$ est sans limite quand $x\to 0^+$: le changement de variable $u=-\ln t$

$$\operatorname{donne} \ \frac{1}{x} \int_0^x \sin(\ln t) dt = \frac{1}{x} \int_{-\ln x}^{+\infty} \frac{-\sin u}{e^u} dt = \frac{1}{x} \left[\frac{\cos x + \sin x}{2e^x} \right]_{-\ln x}^{+\infty} = \frac{\sin(\ln x) - \cos(\ln x)}{2} \text{ et comme}$$

$$\frac{\sin(\ln x) - \cos(\ln x)}{2} = \frac{\sqrt{2}}{2} \sin(\ln x - \pi/4), \frac{1}{x} \int_0^x \sin(\ln t) dt \text{ n'a pas de limite quand x tend vers 0}.$$

D'où la **question** : f étant une fonction définie et continue sur $]0,+\infty[$, de limite infinie en 0^+ , la fonction $\sin(f(x))$, qui a une primitive sur $]0,+\infty[$ et n'a pas de prolongement continu en 0, a-t-elle une primitive $\sup[0,+\infty[$, ce qui équivaut à $\frac{1}{x}\int_0^x \sin(f(t))dt$ a-t-elle une limite finie quand $x\to 0^+$?

Nous ferons d'emblée les *hypothèses* suivantes : f est monotone et de classe C^1 sur $]0,+\infty[$, f'>0 **et** décroissante ou f'<0 **et** croissante. La fonction f est donc convexe ou concave, f' ne changeant pas de signe et étant monotone. Les deux idées principales de la démonstration qui suit sont dues à **Guy Boizet**.

Fixons a dans]0,x[et écrivons $\int_a^x \sin(f(t))dt$ sous la forme $\int_a^x f'(t)\sin(f(t)) \times \frac{1}{f'(t)}dt$ (1/f' est continue);

puisque 1/f' est monotone sur [a,x] par hypothèse, on a droit à la deuxième formule de la moyenne :

il existe
$$c \in [a,x]$$
 tel que $\int_a^x f'(t)\sin(f(t)) \times \frac{1}{f'(t)} dt = \frac{1}{f'(a)} \int_a^c f'(t)\sin(f(t)) dt + \frac{1}{f'(x)} \int_c^x f'(t)\sin(f(t)) dt$.

Comme $\left| \int_{\alpha}^{\beta} f'(t) \sin f(t) dt \right| = |\cos f(\alpha) - \cos f(\beta)| \le 2$ pour tous α et β ,

$$\left| \int_{a}^{x} f'(t) \sin(f(t)) \times \frac{1}{f'(t)} dt \right| \le 2 \left(\frac{1}{|f'(a)|} + \frac{1}{|f'(x)|} \right)$$

et grâce à l'hypothèse faite sur le signe et la monotonie de f', $2\left(\frac{1}{|f'(a)|} + \frac{1}{|f'(x)|}\right) \le \frac{4}{|f'(x)|}$.

Il vient alors $\left| \frac{1}{x} \int_a^x \sin(f(t)) dt \right| \le \frac{4}{x \mid f'(x) \mid}$; en faisant tendre le paramètre a vers 0, on aboutit à $\left| \frac{1}{x} \int_0^x \sin(f(t)) dt \right| \le \frac{4}{x \mid f'(x) \mid}$.

Donc, si de plus $\lim_{x\to 0^+} x$. $|f'(x)| = +\infty$, $\lim_{x\to 0} \frac{1}{x} \int_0^x \sin(f(t)) dt = 0$. En conclusion,

 $\sin(f(x))$ prolongée par 0 a une primitive sur \mathbb{R}^+ si f est C^1 sur $]0,+\infty[$ et de limite infinie en 0^+ , f' ne changeant pas de signe et étant monotone avec de plus $\lim_{x\to 0^+} x \cdot |f'(x)| = +\infty$.

C'est le cas quand f(t) = 1/t: f' est négative et croissante, x | f'(x) | = 1/x tend vers $+\infty$ en 0^+ .

La deuxième formule de la moyenne

Les fonctions f et g étant continues sur [a,b], il existe $c \in [a,b]$ tel que

a) $\int_a^b fg = g(a) \int_a^c f$ quand g est positive **et** décroissante (ou g négative **et** croissante);

b)
$$\int_a^b fg = g(a) \int_a^c f + g(b) \int_c^b f$$
 quand g est monotone.

Montrons simplement ici que a) implique b).

Si g décroît, par exemple, alors la fonction $x \to g(x) - g(b)$ est décroissante positive. Il existe donc $c \in [a,b]$ tel que $\int_a^b f(x)(g(x)-g(b))dx = (g(a)-g(b))\int_a^c f(x)dx \text{ , d'où } \int_a^b fg = g(a)\int_a^c f+g(b)\int_c^b f \text{ .}$