SUR UN THÉORÈME DE HARDY

www.daniel-saada.eu

Soit f dérivable sur un voisinage de $+\infty$: on peut donc supposer que f est dérivable sur $]A, +\infty[$ avec A>0; si $f(x)\sim Cx^u$ en $+\infty$, les réels C et u étant >0 et si f' est croissante, alors $f'(x)\sim Cux^{u-1}$.

Preuve. Par convexité, on a d'abord $u \ge 1$ car le graphe d'une fonction convexe est au dessus de toutes ses tangentes. Par convexité encore, $f'(x) \le \frac{f(x+ax)-f(x)}{ax}$ pour tout a>0. Comme x est positif,

$$\frac{f'(x)}{x^{u-1}} \le \frac{f(x+ax) - f(x)}{ax^u},$$

et puisque
$$f(x+ax) - f(x) \sim C((1+a)^u - 1)x^u$$
, $\frac{f(x+ax) - f(x)}{ax^u} \xrightarrow[x \to +\infty]{} C\frac{(1+a)^u - 1}{a}$.

 $\text{Or } C \frac{(1+a)^u-1}{a} \text{ tend vers } Cu \text{ quand a tend vers 0}: \text{il existe donc } a_0>0 \text{ tel que} \frac{(1+a_0)^u-1}{a_0} < Cu+\varepsilon \text{ , } \varepsilon>0$

donné.

Ensuite, il existe x_0 tel que $x \ge x_0$ entraı̂ne $\frac{f(x+a_0x)-f(x)}{a_0x^u} \le Cu+\mathcal{E}$, par conséquent $x \ge x_0$ implique

$$\frac{f'(x)}{x^{u-1}} \le Cu + \varepsilon \text{ . Avec } f'(x) \ge \frac{f(x) - f(x - ax)}{ax} \text{ (} a > 0 \text{), on aurait about i à } \frac{f'(x)}{x^{u-1}} \ge Cu - \varepsilon \text{ pour } x \ge x_1 \text{ ,}$$

ce qui termine la démonstration.