NOTE 26 – UN ESPACE POLONAIS NON DÉNOMBRABLE CONTIENT TOPOLOGIQUEMENT L'ENSEMBLE DE CANTOR

www.daniel-saada.eu

On dit qu'un espace topologique E contient topologiquement l'ensemble de Cantor $\mathcal C$ s'il existe une partie de E homéomorphe à $\mathcal C$. On dira plus brièvement que E contient $\mathcal C$, ou que $\mathcal C$ se plonge dans E. Nous prouvons que tout espace polonais, c.à.d. métrique complet séparable, contient $\mathcal C$ s'il n'est pas dénombrable. Souvent invoqué (nous en donnons une application) ce résultat important est rarement justifié : aussi m'a-t-il paru utile d'en publier une démonstration.

1) Ensemble et espace de Cantor

L'espace de Cantor est $\mathcal{C}=\{0,1\}^{\mathbb{N}^*}$, (ou $\{0,1\}^{\mathbb{N}}$ peu importe) qui est métrique compact pour la distance $\delta(x,y)=\sum_{n=0}^{\infty}\frac{|x_n-y_n|}{2^n}$, où $x=(x_n)$ et $y=(y_n)$. On sait que \mathcal{C} a la puissance du continu.

L'ensemble de Cantor est homéomorphe à *l'ensemble triadique* de Cantor : à $x=(x_n)\in\mathcal{C}$, on associe le réel $\sum_1^\infty 2x_n / 3^n$ et cette correspondance est bijective et bicontinue.

En particulier, l'ensemble triadique de Cantor a lui aussi la puissance du continu.

 $\mathcal{C} \ \underline{\text{est sans point isol\'e}} : \text{pour tout} \ x \ \text{de} \ \mathcal{C} \text{, pour tout} \ \mathcal{E} > 0 \text{ , il existe} \ y \in \mathcal{C} \ \text{tel que} \ 0 < \delta(x,y) < \mathcal{E} \,.$ Si $x = (x_1, \dots, x_{n-1}, x_n, x_{n+1}, \dots)$, prendre $x^n = (x_1, \dots, x_{n-1}, 1 - x_n, x_{n+1}, \dots)$, alors $0 < \delta(x, x^n) = 1/2^n$.

2) Tout métrique complet (F,d) sans point isolé contient Cantor

On se donne une boule <u>fermée</u> B de F de rayon r > 0 et de centre $c \in F$.

a) Il existe dans B deux boules $\underline{\text{ferm\'ees}}$ disjointes B_0 et B_1 de rayon $r_1 < r \, / \, 2$.

En effet, comme $\,c\,$ n'est pas isolé, il existe $\,a\,$ distinct de $\,c\,$ dans la boule ouverte $B(c,r)\,$:

$$0 < d(a,c) < r$$
.

Soit $r_1 > 0$ tel que $r_1 < d(a,c)/2$ et $r_1 \le r - d(a,c)$: les boules <u>fermées</u> $B'(a,r_1)$ et $B'(c,r_1)$ sont dans B et disjointes et enfin $r_1 < d(a,c)/2 < r/2$.

- **b)** Dans B_0 existent de même deux boules fermées disjointes de rayon $r_2 < r/4$, notées B_{01} et B_{01} . Dans B_1 existent deux boules fermées disjointes de rayon $r_2 < r/4$, notées B_{10} et B_{11} .
- c) On fabrique ainsi, pour tout $n \ge 1$, 2^n boules fermées disjointes, de rayon $r_n < r/2^n$, indicées par $\{0,1\}^n$. Par construction, B_s est incluse dans B_t si $s = (s_1,...,s_n)$ et $t = (s_1,...,s_n,t_{n+1})$.

d) Construction d'une application f de $\mathcal C$ dans F

Si $x=(x_n)\in C$, appelons B_n la boule fermée $B'_{(x_1,\dots,x_n)}$: les B_n sont décroissantes et leur diamètre tend vers 0. Comme F est complet, $\bigcap B_n$ contient un point et un seul 1 , noté y .

On pose alors f(x) = y.

e) f est injective sur C

Si $x \neq x'$, il existe n tel que $x_n \neq x'_n$: soit p le plus petit entier tel que $x_p \neq x'_p$. Les boules $B_{(x_1,\dots,x_{p-1},x_p)}$ et $B_{(x_1,\dots,x_{p-1},x_p)}$ sont alors disjointes: comme $y=f(x) \in B_{(x_1,\dots,x_{p-1},x_p)}$ et $y'=f(x') \in B_{(x_1,\dots,x_{p-1},x_p)}$, y et y' sont distincts.

f) f est continue sur $\mathcal C$

Soit (x^p) une suite de $\mathcal C$ qui converge vers $x\in\mathcal C$: pour $p>p_N$, $\delta(x,x^p)<1/2^N$ et donc $x^p_1=x_1,...,x^p_N=x_N$. Il en résulte que pour $p>p_N$, f(x) et $f(x^p)$ sont dans une même boule de rayon $r/2^N$ et $f(x^p)\to f(x)$.

g) f est une homéomorphie de $\mathcal C$ sur $f(\mathcal C)$ car $\mathcal C$ est compact.

Nous avons donc établi que l'espace complet (F,d) sans point isolé contient une partie homéomorphe à $\mathcal C$.

Conséquence. Tout métrique complet sans point isolé a au moins la puissance du continu.

3) Le théorème de Cantor-Bendixson

Il s'énonce ainsi : tout espace topologique E à base dénombrable $\mathcal B$ d'ouverts est la réunion disjointe d'un fermé sans point isolé F et d'un ensemble au plus dénombrable D.

DÉMONSTRATION. – Posons $F = \{x \in E : v(x) \ est \ non \ dénombrable \ pour \ tout \ voisinage \ de \ x\}$ et D = E - F, et effectuons les vérifications nécessaires :

- D <u>est dénombrable</u>. Pour tout $x \in D$ il existe un voisinage v(x) dénombrable et donc un ouvert dénombrable ω_n de la base $\mathcal B$ qui contient x, aussi D est-il contenu dans une réunion dénombrable d'ouverts dénombrables.
- F est fermé car D est ouvert. Si x n'est pas dans F , il existe un voisinage v(x) dénombrable : tous les points de v(x) ont la même propriété et donc v(x) est dans D qui est donc ouvert.

 $^{\scriptscriptstyle 1}$ Les centres des boules B_n forment une suite de Cauchy.

• F est sans point isolé. Soit x dans F: tout v(x) est indénombrable et $v(x) \cap D$ est dénombrable, aussi $v(x) \cap F = v(x) - v(x) \cap D$ est indénombrable, x n'est pas isolé.

Conséquence. Si E n'est pas dénombrable, il contient un fermé sans point isolé non dénombrable.

4) Tout espace polonais non dénombrable contient Cantor

Rappelons qu'un espace polonais est un espace métrique complet séparable.

Nous avons établi qu'un espace complet sans point isolé contient une partie homéomorphe à $\mathcal C$. Supposons maintenant que (F,d) est un polonais *non dénombrable*, alors d'après **3)**, F=G+D, avec G fermé sans point isolé et D dénombrable. Comme F n'est pas dénombrable, G est non vide ; comme G est fermé, c'est un métrique complet sans point isolé qui contient $\mathcal C$, aussi $\mathcal C$ se plonge-t-il dans F .

5) Tout espace polonais P non dénombrable a la puissance du continu

D'après **4)**, P a au moins la puissance du continu. Or, tout espace métrique séparable se plonge dans $[0,1]^\mathbb{N}$ (on pourra consulter http://www.daniel-saada.eu/Notes/Le Theoreme d Urysohn.pdf). Comme $[0,1]^\mathbb{N}$ a la puissance du continu, P a au plus la puissance du continu. Il en résulte que P a exactement la puissance du continu.

6) Sur tout polonais P non dénombrable existe une mesure diffuse μ non nulle

On sait que P contient une partie K homéomorphe à $\mathcal C$. Sur $\mathcal C$ existe une probabilité diffuse p (mon ouvrage, chapitre 15). Si f est l'homéomorphie de K sur $\mathcal C$, on construit sur K une probabilité diffuse g en posant $g(B) = p\left(f(B)\right)$ pour tout borélien G de G .

En posant $\mu(B)=q(B\cap K)$ pour tout borélien B de P , on obtient sur P une mesure diffuse positive non nulle.

Remarque. Si P est dénombrable, il n'existe pas de mesure diffuse sur P.